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The theory of spin relaxation of conduction electrons is developed for zinc-blende-type quantum wells
grown on �110�-oriented substrate. It is shown that, in asymmetric structures, the relaxation of electron spin
initially oriented along the growth direction is characterized by two different lifetimes and leads to the appear-
ance of an in-plane spin component. The magnitude and sign of the in-plane component are determined by the
structure inversion asymmetry of the quantum well and can be tuned by the gate voltage. In an external
magnetic field, the interplay of cyclotron motion of carriers and the Larmor precession of electron spin can
result in a nonmonotonic dependence of the spin density on the magnetic field.
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I. INTRODUCTION

The long and tunable spin lifetime of carriers in semicon-
ductor low-dimensional structures is a crucial factor for spin-
tronic applications. Of particular interest in this context are
quantum wells �QWs� grown from zinc-blende-type semi-
conductors on �110�-oriented substrates. In such structures,
the spin lifetime of conduction electrons can be as long as
several nanoseconds at room temperature1–3 and tens of
nanoseconds at low temperature4 allowing for a long-range
spin transport.5 Moreover, the spin lifetime can be widely
tuned by the gate voltage2,6,7 and modifying the doping
profile.8 These features are attributed to suppression of the
D’yakonov-Perel’ �DP� spin-relaxation mechanism in sym-
metric �110� QWs.9 The DP mechanism �Ref. 10� usually
limiting the electron-spin lifetime is based on the precession
of electron spins in an effective magnetic field induced by
spin-orbit interaction in noncentrosymmetric media. In
�110�-grown QWs, the effective magnetic field caused by
bulk inversion asymmetry points along the growth direction.9

Therefore, electron spins oriented along the QW normal do
not precess in the field and the DP mechanism gets ineffec-
tive. If, however, the QW is asymmetric, structure inversion
asymmetry leads to the Rashba effective magnetic field11

which lies in the QW plane and speeds up the spin dephas-
ing. Thus, by measuring the spin lifetime of carriers one can
conclude on the Rashba field strength.

Here, we develop a microscopic theory of the electron
spin relaxation in low-symmetry two-dimensional structures,
such as QWs grown on �110�- and �113�-oriented substrates.
We show that the mentioned above common analysis of spin
dynamics can only be used to illustrate the increase in spin
lifetime in symmetric �110� QWs. However, the simplified
model misleads in describing the spin dephasing in asym-
metric structures and determining the Rashba field. In low-
symmetry QWs, the growth direction is not a principle axis
of the spin-relaxation-rate tensor. Therefore, the relaxation of
electron spin initially oriented along the QW normal is de-
scribed by a sum of exponential functions with different de-
cay rates and leads to the appearance of an in-plane spin
component. The magnitude and sign of the in-plane compo-
nent are determined by structure inversion asymmetry of the
QW and can be tuned by the gate voltage. We also study the

effect of an external magnetic field on spin relaxation and
show that the interplay of the cyclotron motion of carriers
and the Larmor precession results in a nonmonotonic depen-
dence of the electron spin on the magnetic field.

It is worth noting that the coupling of the in-plane and
out-of-plane components of electron spin considered here is
a feature of structures of low point-group symmetry and does
not occur in �001�-grown �even asymmetric� QWs. In �001�-
oriented structures, both the Rashba and Dresselhaus fields
lie in the QW plane and their constructive or destructive
interference leads to the in-plane anisotropy of spin
relaxation.12–15 By contrast, in �110� QWs the Rashba and
Dresselhaus fields are orthogonal and cannot compensate nor
strengthen each other.

II. SYMMETRY ANALYSIS

Let us first consider the case of zero magnetic field. The
time evolution of the spin density S�t�, provided that the spin
lifetime is longer than the carrier thermalization time, is de-
scribed by9

dS��t�
dt

= G� − �
�

���S��t� , �1�

where G is the spin generate rate, e.g, due to optical pumping
with circularly polarized light, ��� are components of the
spin-relaxation-rate tensor �, and � and � are the Cartesian
coordinates. The form of the tensor � depends on the spin-
relaxation mechanism and the QW point-group symmetry.

Asymmetric quantum wells grown on �110�-oriented sub-
strate as well as �113�-grown QWs are described by the point
group Cs which contains only two symmetry elements: iden-
tity and the mirror plane perpendicular to the QW plane.8,16

In the case of �110�-oriented structures, the mirror plane is

normal to the in-plane axis x � �11̄0� and contains the axes

y � �001̄� and z � �110�. The symmetry analysis shows that
nonzero components of the spin-relaxation-rate tensor in
such QWs are �xx, �yy, �zz, and �yz=�zy.

The presence of the off-diagonal components �yz and �zy
indicates that both the in-plane axis y and the QW normal z
are not principle axes of the spin-relaxation-rate tensor.
Therefore, the decay of Sy �as well as Sz� cannot be described
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by a single spin lifetime. The principle axes x̃, ỹ, z̃, and eigen
values �i of the tensor �, i.e., relaxation rates along these
axes, are found from the determinant

det�� − �I� = 0, �2�

where I is the unit matrix 3�3. Solution of Eq. �2� has the
form

�x̃ = �xx,

�ỹ = ��yy + �zz + ���yy − �zz�2 + 4�yz
2 �/2,

�z̃ = ��yy + �zz − ���yy − �zz�2 + 4�yz
2 �/2, �3�

where the axes x̃, ỹ, and z̃ are obtained from x, y, and z by
rotating the coordinate frame around the axis x by an angle �,
see Fig. 1. The angle � is given by

tan � =
2�yz

�yy − �zz + ���yy − �zz�2 + 4�yz
2

. �4�

Solution of Eq. �1� in the coordinate frame �x ,y ,z� can be
then derived by projecting S�t� and G onto the axes x̃, ỹ, and
z̃. This calculation shows that, for pulse excitation, the time
evolution of electron spin S�t� after the pulse has the form

Sx�t� = S0xe
−�x̃t,

Sy�t� = S0y�cos2 �e−�ỹt + sin2 �e−�z̃t�

+ S0z cos � sin ��e−�ỹt − e−�z̃t� ,

Sz�t� = S0z�cos2 �e−�z̃t + sin2 �e−�ỹt�

+ S0y cos � sin ��e−�ỹt − e−�z̃t� , �5�

where S0 is the spin density at t=0. One can see that the
relaxation of electron spin initially directed along the QW
normal, i.e., when S0 � z, is described by two different rates �z̃
and �ỹ. Moreover, the relaxation leads to the rotation of spin
in the �yz� plane resulting in a nonzero value of Sy. Such a
rotation is illustrated in Fig. 1 where the electron spin S�t� is
shown as a sum of the components Sỹ�t� and Sz̃�t� along the
principle axes ỹ and z̃. At t=0, the spin is oriented along the
QW normal, therefore, S0ỹ =S0 sin � and S0z̃=S0 cos �. In the

course of time, the components Sỹ�t� and Sz̃�t� decay at dif-
ferent rates, �ỹ and �z̃, respectively. Thus, at t�0, the ratio
Sỹ�t� /Sz̃�t� is not equal to the initial one S0ỹ /S0z̃. It means that
the spin S�t� does not point along the QW normal anymore
and has nonzero component Sy�t� as shown in Fig. 1. Simi-
larly, the relaxation of electron spin oriented along the y axis
leads to the appearance of out-of-plane component Sz�t�.

Besides experiments with time resolution, spin phenom-
ena are widely studied in the regime of continuous-wave
�cw� pumping, where the spin generation rate G is constant
on the spin lifetime scale. The steady-state spin density in the
regime of cw pumping can be directly obtained from Eq. �1�
and has the form

Sx =
Gx

�xx
,

Sy =
Gy�zz − Gz�yz

�yy�zz − �yz
2 ,

Sz =
Gz�yy − Gy�yz

�yy�zz − �yz
2 . �6�

Equations �5� and �6� are general and describe the spin prop-
erties of �110� QWs no matter which microscopic mecha-
nism determines the spin dephasing.

III. D’YAKONOV-PEREL’ MECHANISM

In a wide range of temperature, carrier density and mobil-
ity, the spin lifetime in two-dimensional semiconductor
structures is limited by the DP mechanism.10 In this mecha-
nism, components of the spin-relaxation-rate tensor in the
collision-dominated regime are given by9

��� = − �
0

� 	1

f�0�
df�
k�

d
k
�	�k

2
��� − 	�k,��k,�
�d
k, �7�

where 	1 is the isotropization time of spin density, f�
k� is
the distribution function of carriers, 
k=
2k2 / �2m��, m� is
the effective mass, �k is the Larmor frequency correspond-
ing to the effective magnetic field caused by spin-orbit cou-
pling, ��� is the Kronecker symbol, and the angle brackets
denote averaging over the direction of the wave vector k.
The Larmor frequency corresponding to k-linear effective
magnetic field in �110� QWs of the Cs point group has the
form

�k =
2



��1ky,− �2kx,�kx� . �8�

The parameter � originates from bulk inversion asymmetry
while �1 and �2 are nonzero only in QWs with structure
inversion asymmetry. We also note that �1 and �2 are lin-
early independent in QWs of the Cs point group. The differ-
ence between �1 and �2 cannot be obtained in framework of
the Rashba model which gives �1=�2. To obtain the differ-
ence in a microscopic calculation of the band structure one
needs to take into account both QW asymmetry and the lack
of an inversion center in the host crystal.17

x, x || [110]

z || [110]

y || [001]

�
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0
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z
~

y
~

–
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S0y~
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FIG. 1. �Color online� Arrangement of the principle axes x̃, ỹ,
and z̃ of the spin-relaxation-rate tensor. Due to difference in the
relaxation rates along the axes ỹ and z̃, the relaxation of electron
spin S0 � z leads to the appearance of the in-plane component Sy�t�.

S. A. TARASENKO PHYSICAL REVIEW B 80, 165317 �2009�

165317-2



It follows from Eqs. �7� and �8� that the components ���

in asymmetric �110�-grown QWs assume the form

�xx = ��2
2 + �2�C, �yy = ��1

2 + �2�C ,

�zz = ��1
2 + �2

2�C, �yz = �zy = �2�C , �9�

where the parameter C depends on the temperature
and carrier density and for the degenerate two-dimensional
electron gas it is given by C= �4	1m� /
4�EF with EF being
the Fermi energy. Thus, for the DP mechanism we
derive �x̃= ��2

2+�2�C, �ỹ = ��1
2+�2

2+�2�C, �z̃=�1
2C, and

tan �=�2 /� �see Ref. 18 for the case of �1=�2�. One can see
that all three spin relaxation rates are different and the rate �z̃
differs from �zz approximately by a factor of 2 even in the
case of small angles �.

Figure 2 shows the time dependences of the spin compo-
nents Sz�t� and Sy�t� given by Eq. �5� for different ratios
�1 /�. It is assumed that the spin is initially oriented along
the QW normal, S0 � z, and �1=�2. The time t is measured
here in units of the in-plane relaxation time in symmetric
QWs 	sym=�2C. The dependences plotted in logarithmic
scale demonstrate that Sz�t� is not described by one exponen-
tial function and Sy can be comparable to Sz even in the case
of spin pumping along the QW normal. We also note that the
sign of Sy is determined by the sign of the product �2�.
Therefore, one can control the in-plane spin component by
tuning the Rashba field, e.g., by the gate voltage.

IV. SPIN RELAXATION IN MAGNETIC FIELD

Now we consider the effect of an external magnetic field
on spin relaxation. The effect is dual. First, the magnetic field
causes the precession of nonequilibrium spin resulting in a
spin depolarization �Hanle effect�. Second, the magnetic field
leads to the cyclotron motion of free carriers, which changes
the direction of the wave vector k and thereby suppresses the
DP spin relaxation mechanism.19–22 Both effects can be

fruitfully treated in the framework of the spin-density-matrix
formalism. In this approach, the electron distribution is de-
scribed by the spin density matrix �k= fk+sk ·�, where fk and
sk are the functions of particle and spin distributions in the k
space, respectively, and � is the vector of the Pauli matrices.
The spin distribution sk, within the relaxation time approxi-
mation, satisfies the kinetic equation �see, e.g., Refs. 19 and
22�

�sk

�t
+ sk � ��L + �k� +

�sk

�k�
�k �

eB

m�c
�

�

= Gk −
sk − 	sk


	1
,

�10�

where �L is the Larmor frequency whose components are
given by �L,�=�Bg��B� /
, �B is the Borh magneton, g�� is
the effective g-factor tensor in the absence of cyclotron mo-
tion, e is the electron charge, c is the speed of light, and Gk
is the spin generation rate into the state k. We note the g
factor can be strongly anisotropic in quantum-well
structures.23–25 In particular, in �110�-grown QWs of the Cs
symmetry the components gxx, gyy, gzz, gyz, and gzy are lin-
early independent and can be nonzero.

The anisotropic part of the spin-distribution function
�sk=sk− 	sk
 is caused by spin-obit splitting of electron
states. In the collision-dominated regime, i.e., at �k	1�1, it
is much less than the isotropic part 	sk
 and, to the first order
in �k	1, has the form

�sk = −
	1�	sk
 � ��k + �c	1 � �k/��k��

1 + ��c	1�2 . �11�

Here, �c=eBz / �m�c� is the cyclotron frequency, �k is the
polar angle of the wave vector k, �k=arctan�ky /kx�, and 	sk

is the quasiequilibrium spin distribution which, in the case of
small degree of spin polarization of a two-dimensional elec-
tron gas, is given by9

	sk
 = −
2�
2

m�f�0�
df�
k�

d
k
S . �12�

Equation �11� is derived taking into account the fact that �k
is linear in k and assuming that �L	1�1 and Gk is an iso-
tropic function of k. Finally, substituting expressions given
by Eqs. �11� and �12� for �sk and 	sk
, respectively, and sum-
ming up Eq. �10� over the wave vector k, one obtains the
kinetic equation for the total spin density

S��t�
dt

+ �S�t� � �L��� = G� − �
�

���� S��t� , �13�

where ���� =��� / �1+ ��c	1�2� are components of the spin-
relaxation-rate tensor in the magnetic field, �L�=�L+��L,
and ��L is a contribution to the precession frequency caused

FIG. 2. �Color online� Time evolution of the spin components
Sz�t� and Sy�t� calculated for different ratios �1 /� and the initial
spin S0 oriented along the QW normal z.
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by cyclotron motion of free carriers in QWs with spin-orbit
splitting �see Ref. 19�

��L = −
�c	1

1 + ��c	1�2�
0

� 	1

2f�0�
df�
k�

d
k

�k �

��k

��k
�d
k.

�14�

In fact, this contribution can be considered as a correction to
the effective g factor which depends on the relaxation time 	1
and the magnetic field strength. We note that the frequency
��L is expressed via the same parameters which determine
the spin-relaxation-rate tensor and is comparable to ���� in
the field �c	1�1. Taking into account the form of �k given
by Eq. �8�, we obtain nonzero components of ��L in �110�-
grown QWs

��L,y =
�1��c	1

1 + ��c	1�2C, ��L,z =
�1�2�c	1

1 + ��c	1�2C . �15�

Equation �13� describes the spin dynamics in external
magnetic field. It yields that the dependence of the out-of-

plane spin component Sz, which is usually studied in experi-
ment, on the magnetic field in the case of cw spin pumping
along the QW normal has the form

Sz =
��xx� �yy� + �L,z�2 �Gz

�xx� ��yy� �zz� − �yz�
2� + �xx� �L,x�2 + �yy� �L,y�2 + �zz� �L,z�2 + 2�yz� �L,y� �L,z�

. �16�

Shown in Fig. 3 are the dependences of Sz on the field B � z
�Faraday geometry� plotted for different ratios �1 /� and
�L,z	sym /�c	1, �1=�2 and gyz=0. One can see that the mag-
netic field dependence of Sz can be nonmonotonic even in the
Faraday geometry and the effect is more pronounced at
��L,z	sym /�c	1��1. Such an unusual behavior is attributed to
the noncoincidence of the growth direction with a principle
axis of the spin-relaxation-rate tensor, see Fig. 1. As it was
discussed above, in zero magnetic field, the electron spin
initially oriented along z is decomposed into the projections
Sz̃ and Sỹ which decay at different rates. Since �ỹ ��z̃ for the
DP mechanism, the component Sỹ rapidly decays and the
spin polarization is determined by the long-life component
Sz̃. The external magnetic field deflects the electron spin
from the slow-relaxation axis z̃ speeding up the spin dephas-
ing. Thus, the Larmor precession leads to the decrease in
spin polarization in the magnetic field. At stronger fields, the

cyclotron motion suppresses the DP mechanism of spin re-
laxation, which results in a growth of Sz. The interplay of the
Larmor precession and the cyclotron motion of free electrons
in asymmetric �110� QWs leads to the nonmonotonic depen-
dence of the spin density Sz on magnetic field as shown in
Fig. 3.

In summary, it is demonstrated that the in-plane and out-
of-plane components of electron spin are coupled in quantum
wells of low-space symmetry. This opens up additional op-
portunity to manipulate electron spins in low-dimensional
semiconductor structures.
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